

 Swinburne Research Bank
 http://researchbank.swinburne.edu.au

Kalmalrudin, M., Hosking, J., & Grundy, J. (2011). Improving requirements quality using

essential use case interaction patterns.

Originally published in R. N. Taylor, H. Gall, & N. Medvidovic (eds.). Proceedings of the 33rd
International Conference on Software Engineering (ICSE 2011), Hawaii, United States,

21–28 May 2011 (pp. 531–540). New York: ACM.

Available from: http://doi.acm.org/10.1145/1985793.1985866

Copyright © ACM, 2011.
The definitive version was published in Proceedings of ICSE (2011).

This is the author’s version of the work. It is posted here by permission of ACM for your
personal use. Not for redistribution. If your library has a subscription to these conference

proceedings, you may also be able to access the published version via the library catalogue.

Accessed from Swinburne Research Bank: http://hdl.handle.net/1959.3/153324

Improving Requirements Quality using Essential Use Case
Interaction Patterns

Massila Kamalrudin
Department of Electrical and

Computer Engineering,
University of Auckland,

Private bag 92019 Auckland 1142
New Zealand

mkam032@aucklanduni.ac.nz

John Hosking
Department of Computer Science,

University of Auckland,
Private bag 92019 Auckland 1142

New Zealand

john@cs.auckland.ac.nz

John Grundy
Swinburne University of Technology

Centre for Complex Software,
Systems & Services, PO Box 218,
Hawthorn Victoria 3122, Australia

jgrundy@swin.edu.au

ABSTRACT
Requirements specifications need to be checked against the 3C’s -
Consistency, Completeness and Correctness – in order to achieve
high quality. This is especially difficult when working with both
natural language requirements and associated semi-formal
modelling representations. We describe a technique and support
tool that allows us to perform semi-automated checking of natural
language and semi-formal requirements models, supporting both
consistency management between representations but also
correctness and completeness analysis. We use a concept of
essential use case interaction patterns to perform the correctness
and completeness analysis on the semi-formal representation. We
highlight potential inconsistencies, incompleteness and
incorrectness using visual differencing in our support tool. We
have evaluated our approach via an end user study which focused
on the tool’s usefulness, ease of use, ease of learning and user
satisfaction and provided data for cognitive dimensions of
notations analysis of the tool.

Categories and Subject Descriptors
D.3.3 [Software Engineering]: Requirement/Specifications –
methodologies, tools

General Terms
Algorithms, Documentation, Design, Human Factors, Languages,
Verification.

Keywords
Requirements engineering, essential use cases, requirements
patterns, consistency management, tool support

1. INTRODUCTION
Requirements specifications are captured by requirements
engineers from clients at the earliest stages of software
development. Requirements are most commonly in a form of
natural language written by either the clients or the requirements
engineers, often stored in documents, presentations and interview
transcripts. This form of human-centric representation is expected
to be accessible by both parties[1].

However, a written natural language requirement is commonly
error prone and vague [2] leading to “inherent imprecision, such
as ambiguities, incompleteness and inaccuracy” [3]. It is common
to be faced with inconsistencies as the requirement elicitation
process involves two or more parties in delivering and
understanding correct requirements[1]. Zowghi et al assert that
expression by different stakeholders may lead to inconsistencies
and contradictions because the parties keep changing their mind
throughout the development process [4]. Inconsistent
requirements occur when two or more stakeholders have differing,
conflicting requirements and/or the captured requirements from
stakeholders are internally inconsistent when two or more
elements overlap and are not aligned [5], [6]. Typically the
relationship is articulated as a consistency rule against which a
description can be checked. Inconsistency in requirements also
occurs when there are incorrect actions [2], requirements clashes
and bad dependencies [7], sometimes resulting from a lack of
skills or capabilities of different users dealing with shared or
related objects. These complications also often introduce
incomplete requirements that are missing key definitions and
constaints for the software system. Incorrect requirements may
occur where the requirements captured do not accurately reflect
the actual requirements and needs of stakeholders. These quality
problems of inconsistent, incomplete and incorrect requirements
lead to development delay, various quality errors and raise the
cost of the system development process, often risking overall
project success [6].

To address these quality problems occurring when working with
natural language requirements a variety of heuristic algorithms,
formal approaches and natural language processing methods have
been developed and applied by industry practitioners and
researchers. These deal with complex mathematical and linguistic
analysis of natural language or models in order to maintain the
consistency of requirements either in the form of requirements
documents or models [8],[9],[10],[11],[12]. Translation of natural
language models into formal or semi-formal models using these
approaches allows for more rigorous inconsistency checks and
completeness checks. Reflecting modified formal requirements
back to stakeholders in natural language allows stakeholders to
check for correctness and completeness problems, sometimes
highlighting their own disagreements over the system
requirements.
However, while the heavyweight techniques described above are
useful, we were motivated to develop a more lightweight
approach to support translation between natural language and
semi-formal requirements models [13]. The previous focus of our

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICSE’11, May 21–28, 2011, Honolulu, Hawaii, USA.
Copyright© 2011 ACM 978-1-4503-0445-0/11/05... $10.00.

work was to support translation between, and then the low-level
management of, consistency between three forms of requirements:
textual natural language, abstract interactions, and Essential Use
Case models [14]. In the research described in this paper we
extend this work to better support higher level inconsistency,
incompleteness and incorrectness detection and thus improve
requirements quality. The essence of the approach is to support
translation of natural language requirements into semi-formal
abstract interaction and Essential Use Case models. We then use a
concept of essential interaction patterns to detect quality problems
in the extracted semi-formal requirements models (i.e. potential
inconsistency, incompleteness and incorrectness), which are then
highlighted to the requirements engineer and stakeholders. We
highlight these potential errors by annotating the visual semi-
formal model and textual natural language depictions in our
support tool. We have evaluated our tool with an end user study
focussing on usability and analysis using Cognitive Dimensions
framework [15] heuristic characteristics.

2. BACKGROUND
We chose to use the Essential Use Cases (EUC) semi-formal
model for software requirements to translate natural language
requirements into; to analyze for inconsistencies, incompleteness
and incorrectness; and to keep consistent with the human-centric
natural language representation. EUCs are made up of a set of
organized “abstract interactions” and EUCs extracted from natural
language specifications can be compared against templates of
“interaction patterns” to detect requirements quality problems.

Figure 1. Capturing requirements using an Essential Use Case

(adapted from [14])

2.1 Essential Use Cases
The Essential Use Case (EUC) approach was developed by
Constantine and Lockwood [14]. EUCs are designed to resolve
problems which occur in conventional Use Case modeling and
have important benefits over that approach [16]. An EUC is
defined as a “structured narrative, expressed in a language of the
application domain and of users, comprising a simplified,
generalized, abstract, technology free and independent
description of one task or interaction that is complete, meaningful,
and well-defined from the point of view of users in some role or
roles in relation to a system and that embodies the purpose or
intentions underlying the interaction”[14]. An EUC is thus a form
of dialogue between user and system which supports better
communication between developers and stakeholders. Its
technology-free nature enhances requirements gathering as it only
allows specific detail relevant to the design to be captured [16].

Figure 1 shows an example of how an Essential Use Case is used
to model a core software system requirement based on a textual
natural language requirement in the form of a user scenario.
Important key phrases (essential interactions) are extracted and

identified with a meaningful abstract term (essential requirement
or abstract interaction). The abstract interaction is then classified
into a user intention or system responsibility in a sequence of
abstract steps making up an EUC model of a system requirement.

An EUC is shorter and simpler compared to a conventional use
case as it comprises an abstraction of only essential steps and the
user’s intrinsic interest. It comprises just user intentions and
system responsibilities permitting users to capture the core part of
the requirement without the need to describe the user interface in
detail [16]. An EUC aims to identify “what the system must do”
without being concerned on “how it should be done”. Biddle et al.
suggest there is a fruitful research area on consistency issues
between the responsibility concepts in a requirement and its
related design [16].

Table 1 Example of Essential interactions, Abstract
interaction and their associated domains

Essential
Interaction

Abstract
Interaction

Scenario Domain

choose cash
withdrawal

choose Online banking

choose a type choose e-commerce/online banking

choose
payment

choose e-commerce/online
banking/online booking

indicate the
seminar

choose online booking

indicate the
vehicle type

choose Online reservation

choose the film choose Online reservation

select an event choose Online booking/online reservation

2.2 Essential Interactions Library
As the requirements capture example of Figure 1 shows,
requirements engineers need to derive appropriate essential
interactions from the requirements at a correct level of
abstraction. Biddle et al [17] and our own study [1] found that
almost all users have problems defining the right level of
abstraction and find the abstraction process to be time consuming.
This makes checking requirements for consistency and
completeness difficult.

This motivated us to provide an Essential Interaction Library to
overcome these problems. This library consists of important key
phrases (essential interactions) and mappings to appropriate
essential requirements (abstract interactions) which support a
variety of different application domains [1]. Essential interactions
are not categorized based on one particular scenario but can be
associated with multiple scenarios such as online booking, e-
commerce, online business, online banking, online voting system,
online reservation, mobile application and others. Thus, multiple
essential interactions from various domains can be associated with
one well-defined abstract interaction. Table 1 shows an example
for the abstract interaction “choose” with multiple essential
interactions and various scenario domains associated with this one
interaction. Low-level requirements problems can be identified
using this approach e.g. phrases of natural language text with no
corresponding EUC abstract interactions identifiable or EUC
interaction added by the requirements engineer with no natural
language phrase(s) [1].

2.3 EUC Interaction Patterns Library
A key reason we chose to use the EUC model is that it also lends
itself to a deeper analysis enabling identification of potential

problems with the extracted requirements. A set of “best practice”
EUC interaction patterns can be identified for a range of typical
user/system interactions in a wide variety of domains [17]. Once
an EUC model has been extracted it can be compared against a
pattern in our EUC Interaction Pattern Library. An extracted EUC
model would be expected to conform to one of the patterns, or
templates, in this library i.e. exemplify one common interaction
style. If it deviates from this pattern this typically indicates
incompleteness (missing interactions), incorrectness (wrongly
sequenced interactions or wrong interactions), and possibly
inconsistency (redundancy, conflicting or nonsensical
interactions). Table 2 shows an example of an EUC interaction
pattern for reserving items and its sequence of abstract
interactions.

Table 2 Example of an EUC Interaction Pattern
Scenarios/

Use Case stories
User intention

Abstract Interaction
System responsibility
Abstract Interaction

choose
 offer choice
 view detail
 request identification

identify self

Reserve item

 confirm booking

3. OUR APPROACH
We have applied the EUC interaction pattern library concept
together with an inter-representational traceability approach to
check for requirements quality problems (inconsistency,
incompleteness or incorrectness) that exist in any of the
requirement representation components: textual natural language,
Abstract Interactions and Essential Use Cases. Figure 2 shows an
outline of our requirements quality management process.

Figure 2. Outline of our requirements quality management

process.
Natural language requirements are first translated into a set of
abstract interactions (1). This is done by using our Essential
Interactions library of concrete abstract interaction mappings,
which abstract common expressions and phrases into EUC
abstract interactions [13]. These abstract interaction sequences are
then translated into an EUC model to capture the requirements (2).
This is done by applying EUC structuring rules to the interactions
and a visual EUC requirements model is generated. A set of inter-
model checks between different requirements representation

components and intra-model checks of each of the specific models
is then conducted (3). The sequence of EUC interactions is
compared to common sequences, or EUC interaction patterns, in
our EUC interaction patterns library. The extracted EUC model’s
abstract interactions are thus compared to an expected EUC
pattern’s set of abstract interactions and their sequencing. These
comparisons highlight potential intra- and inter-model problems
such as:
• Sequencing of requirement elements: The sequence of

Abstract Interactions and EUC components must be in the
same order as the sequence of essential interactions in the
textual requirement. This detects inconsistencies between
models where one has been edited and others not and the
ordering of the interactions between user and the system
needs to be made consistent (eg see Figure 4).

• Naming of requirement elements: The name of an EUC
component must be the same as the abstract interaction or
vice versa and these need to map to a specific essential
interaction in the textual natural language requirement. The
abstract interaction also needs to match one of the abstract
interactions in the EUC pattern library. This detects
inconsistencies between models and also incompleteness:
for example, a large textual requirement phrase with no
matching abstract interaction or abstract interaction with no
matching natural language phrase (eg see Figure 5).

• EUC interaction pattern matching: the abstract interaction
elements and sequence of elements in EUC models needs to
match a suitable template in the EUC pattern library.
Updating an abstract interaction or EUC element to conform
to matching components requires updating the equivalent in
the textual natural language representation based on the
matching pattern in the EUC pattern library. This detects
incomplete and incorrect requirements elements: EUC
models not conforming to a recognized pattern usually
indicate missing, duplicated or redundant elements, or
incorrectly expressed interaction components and sequences
in the requirements extracted (eg see Figure 6).

• Consistency within models: The EUC and abstract
interaction sequence semi-formal notations have meta-
models with constraints expressed over them, allowing low-
level validation of correctness and internal notation
consistency. These check for low-level intra-notation
consistency, completeness and correctness e.g. EUC has
start/end interactions; naming conventions of elements are
met; all elements are part of a valid sequence of EUC
model-compliant interactions, etc (eg see Figure 3 (2,3)).

• Consistency between changing components: All three
requirements representations, textual natural language
scenario, abstract interaction and EUC, must be consistently
updated if elements in any one of the models are modified
by the requirements engineer. Modification processes
include adding, deleting, re-sequencing and changing
properties of elements (eg see Figure 3 (4)).

When issues with requirements models are detected we focus on
providing warning, feedback notification and visualization of the
quality issues existing in any component (4). Components that
mismatch, do not exist in one model, have differing sequencing
between components, or that overlap with non-corresponding
names or other information are classed as an “inconsistency”.
Detected redundancy of a component or mis-match between
component and expected element in an otherwise matching
pattern is classed as “incorrectness”. Missing components or

sequences in a model compared to an otherwise matching pattern
are classed as “incomplete”. The set of requirements are assumed
to be “complete” [18] once all the requirements model elements
satisfy a match or matches in the EUC interaction pattern library.

Requirements engineers can choose to either (i) resolve a detected
quality issue by modifying the components based on the results of
the consistency engine recommendation: (ii) tolerate the
inconsistency until later, with our tool tracking it, or (iii) strictly
ignore the inconsistency (5). We avoid forcing requirements
consistency immediately as consistency rules cannot always
automatically maintain the consistency of the set of requirement
components. For example, changing the sequence of components
of the abstract interaction or EUC, cannot automatically enforce a
change in the structure of the textual natural language as this
requires manual intervention. In this situation, a warning and
notational element highlighting make users aware that the
inconsistency is still present. Explicitly ignoring the inconsistency
(suppressing warnings) is also allowed as we respect requirements
engineers to make the final decision on the quality of their
requirements. End user stakeholders can view updated and/or
annotated textual requirements at any time to comment on
correctness and completeness of the requirements model. While
the EUC model is arguably end user-friendly, keeping it
consistent with the natural language representation affords the
latter human-centric view’s continued use through the
requirements engineering process.

4. TOOL SUPPORT AND USAGE
4.1 Tool Support
We have developed a prototype tool called MaramaAI
(Automated Inconsistency checker) to help requirements
engineers in managing inter-notation requirements translation,
consistency management and quality improvement process based
on our approach outlined in the previous section. Our tool helps to
lessen human intervention and minimizes time taken to manage
requirements formalisation from textual natural language to the
semi-formal representation in an EUC model. It also supports
incremental refinement of the requirements to address detected
quality issues but also evolution of the requirements over time.
The natural language requirements are kept consistent with the
EUC model allowing both to co-exist during requirements
engineering. Besides capturing the abstract interactions from the
textual natural language requirements, a requirements engineer
can also view the simplified interactions between the user and the
system in the EUC automatically. This form of interaction
summary allows requirements engineers to understand better the
flow of the interactions, structure of the requirements and view
key inconsistency, incompleteness or incorrectness errors
identified by the tool. Warning and feedback messages are also
provided to notify the requirements engineers of quality issues
detected throughout requirements refinement and correction.

Deeper analysis for completeness and correctness checks are
provided by the tool. The tool compares extracted EUC models to
our set of template EUC interaction patterns that represent valid,
common ways of capturing EUC models for a wide variety of
domains. Matching of a substantial part of an extracted EUC
model to an EUC pattern indicates potential incompleteness
and/or incorrectness at the points of deviation from the pattern.
These potential problems are highlighted to the engineer using
visual annotations on the EUC model elements. Currently

approximately 30 generic EUC interaction pattern templates are
available in the tool and an extracted EUC model is expected to
match one of these or else differences are highlighted. New
patterns can be added as required. Extracted EUC models that
differ slightly, but in ways the engineer considers reasonable, can
be marked as “complete”.

4.2 Consistency Checking
We use the example scenario of reserving a vehicle to illustrate
the requirements extraction, checking and evolution process using
our MaramaAI tool. The textual natural language requirements are
processed and a sequence of abstract interactions extracted and
visualised. We use a large database of abstract interaction patterns
to identify phrases in the natural language which map onto an
EUC abstract interaction concept [1]. To do this, we parse the
natural language text for keyword phrases, locate a matching
essential interaction phrase in the database and then use its
associated abstract interaction. From the sequence of abstract
interactions an EUC model is generated using the EUC model
visual language.

Figure 3 shows an example of some natural language
requirements (1), extracted abstract interaction phrases (2), and a
generated EUC model representing the requirements (3).Once
these requirements have been extracted and represented in these
three forms, MaramaAI provides low-level checking of the
abstract interaction sequence and EUC model internal consistency
using their defined meta-model constraints. It also supports inter-
model consistency management by propagating changes made to
one representation to the other two representations. Finally, it
provides deeper analysis by comparing the EUC model to a
library of EUC model templates and highlights deviations. We
initially illustrate inter-representation consistency management
and then EUC model analysis.

Figure 3 (4) shows addition of a new abstract interaction
“calculate cost”. A warning notifies where an inconsistency is
detected between representations (5). Users can either (i) resolve
the inconsistency by updating the textual natural language
requirement; (ii) undo the change that introduced the
inconsistency; or (iii) tolerate the inconsistency. A problem
marker warning is provided to inform users about such unresolved
inconsistency errors (6).

Figure 4. shows an example of MaramaAI tolerating inconsistency
when EUC element sequence order is changed. The EUC element
“choose” has been moved to the end of the EUC model and this
change impacts the other two requirements forms. The textual
requirement and abstract interaction sequence are now
inconsistent with the EUC representation. The tool colors the
associated abstract interaction “choose” red and annotates the
associated essential interaction “indicates” with “***”. An
inconsistency problem marker appears notifying the user about the
inconsistency. Options to resolve the inconsistency by moving the
associated abstract interaction component are provided to the user.

In this case, the user will have to tolerate the inconsistency until
later as changing the structure of the highlighted phrases (essential
interactions) will cascade changes to the whole structure of the
textual natural language requirement. Another problem marker
warning is provided to continue to inform the user of the existence
of an inconsistency that has not yet been resolved.

Figure 3. Extracting an EUC model then adding a new abstract interaction.

Figure 4. Changing the ordering of EUC elements.

The tool forces the user to resolve some inconsistencies if the
error causes major inconsistency of the requirements components
from the beginning or throughout the process. For example, in
Figure 5, the abstract interaction “choose” is changed to “ask
help”. This change causes an inconsistency with the EUC
component and textual requirement as indicated in Figure 5 (1).
This is because the abstract interaction is related to a particular
essential interaction in the interaction library and this may affect
the extracted essential interaction. The EUC component is also
affected as it is dependent on its associated extracted abstract

interaction. The user is provided with a list of words or phrases (2)
as alternatives for “ask help” which are recognized as correct and
complete, as they match essential interaction phrases contained in
the EUC interaction pattern library. MaramaAI users can create a
new natural language requirement phrase based on the suggestions
they think are relevant to the context provided they map to a
phrase in the EUC interaction pattern library. This library can also
be extended with new abstract interaction phrases as required.
This is currently done by the tool developer but we will let
requirements engineers do this in future via visual interfaces.

4.3 Inconsistency, Incompleteness and
Incorrectness checking

Further detailed analysis of the consistency, correctness and
completeness of requirements models is provided by using EUC
pattern library instances to validate the extracted EUC model. To
do this, the checker attempts to match the extracted EUC model
with one of the generic EUC interaction patterns, or templates, in
our EUC interaction pattern library. Currently, there are
approximately 30 generic EUC interaction pattern templates
covering various domains developed by us and collected from the
research of Constantine and Lockwood [14] and Biddle et al [17] .
The generic template is assumed to be the correct and complete
interaction (an oracle) for a specific scenario. This provides the
requirements engineer with a further, higher level, check of their
requirements model by comparing their EUC, representing a semi-
formal model of the original natural language requirements, with a
template which matches a “best practice” EUC representation for
the abstract interaction scenario. As discussed above, this
technique allows us to detect:

• intra-model inconsistencies (e.g. one or more unexpected
abstract interaction or interactions out of expected sequence

appearing in the extracted EUC model);
• incompleteness (missing interactions occur in the extracted

EUC model compared to the generic template matched in
the EUC pattern library); and to some degree

• incorrectness: requirements captured in the extracted EUC
model do not match a best-practice template in the pattern
library, indicating possibly incorrect textual requirements.

For example, Figure 6 (1) shows the requirement describing
reservation of a rental vehicle from a company. To check for
consistency of this requirement, the user can choose a provided
EUC interaction pattern template ”reserve item” (outlined in
Figure 2) to compare to the extracted EUC model. Alternatively
they can have MaramaAI compare the extracted EUC model to all
available patterns and find a “best fit”, highlighting any
differences from the best fit template as possible problems.
MaramaAI checks whether the extracted EUC requirements model
is consistent with the identified EUC interaction pattern library
template or not. If differences are found a warning message is
provided and the tool uses a visual differencing approach [19] to
highlight potential inconsistency, incompleteness and/or
incorrectness errors that may exist in the requirements model, as
shown in Figure 6 (2).

Figure 5. Change of Abstract interaction element’s name

Figure 6. Visual differencing for detecting inconsistency, incompleteness and incorrectness using an EUC interaction pattern

library template.

Here, EUC interaction pattern elements are shown as a set of grey
elements adjacent to the extracted EUC model (3). Visual link
“” annotations connect corresponding elements in the extracted
EUC and pattern. The tool is able to show errors such as wrong
sequence ordering, redundancy, missing elements and existence
of extra elements in the EUC model. Incorrect sequences are
obvious via crossed links (e.g. the out of order “choose” abstract
interaction). Unmatched items in the pattern template (e.g.
“identify self”) or in the extracted EUC (e.g. “calculate cost”) are
highlighted (4) (in this case juxtaposed to indicate the pattern
element could sensibly replace the extracted element).

Based on the visualized errors, requirements engineers can choose
to: change their EUC model to conform to the template view;
incorporate some of the recommended changes into their model;
or keep their existing EUC requirements model. Our philosophy
is to lessen the human effort and intervention in checking for
potential errors but leave the final decision to accept or reject
recommendations to the user. Our belief is that combining tool
automation support to identify potential requirements errors with
human acceptance and cross validation better helps unearth and
fix inconsistency, incompleteness and incorrectness errors [20].

5. ARCHITECTURE AND
IMPLEMENTATION

We developed the MaramaAI toolset using our Marama meta-
tools [21] and a number of specialised components for
requirements extraction, analysis, comparison to pattern library
and visual differencing. An outline of the tool’s architecture is
represented in Figure 7. We developed the meta-model, editing
tools and basic EUC model constraint management with Marama,
generating a specification for the tool (1). When using
MaramaAI, a requirements engineer opens the MaramaAI tool
specification and the Marama meta-tool instantiates the tool
including model and diagrams (2). Textual requirements are
extracted from plain text documents (which themselves can be
extracted from Word and PDF formats). This is done by using
interaction phrase to abstract interaction mappings in our Abstract
Interactions library (3). A list of extracted abstract interactions is
generated which is then translated into an EUC model. These
models are used to generate an abstract interactions list and
associated EUC diagram (4).

Figure 7. MaramaAI tool architecture.

We have mapped our EUC interaction pattern library approach,
illustrated in Figure 2, to the consistency management framework

proposed by [22]. The requirements engineer can make
modifications to any of the representations supported by
MaramaAI (5), including changing textual representation or
adding, updating, resequencing or removing elements in EUC or
abstract interaction representations. Inconsistencies between these
representations are detected and shown to the user via
highlighting text and/or diagram elements. The EUC model is
compared against templates in the EUC patterns library to check
its completeness and correctness (6). Differences to a chosen
pattern template in the library are highlighted between the EUC
model and template via visual differencing (7). This annotates the
EUC model to indicate these differences. For all inconsistencies
and differences from an EUC model from a pattern library
template, the requirements engineer can choose either to resolve
the inconsistency by modifying components, tolerate the
inconsistency (deferring for later attention) or indicate they wish
to ignore the inconsistency. An inconsistency is resolved by
updating a representation model appropriately and MaramaAI
provides support to the user by presenting and applying potential
changes to resolve the inconsistency. In each case any
modification results in the models again being checked with the
meta-model consistency rules and the EUC pattern template.

We implemented the visual diagramming interfaces of MaramaAI
using the Marama metatool [21]. This supports rapid design and
development of domain specific visual languages, and we used
these facilities to develop the notations and editors for the abstract
interaction listing, the EUC models and the EUC interaction
patterns (the latter used in the visual differ). The meta-model and
DSVL editors were supplemented with event handlers to provide
low-level model constraints, consistency management support
and interfaces to other elements of the architecture. These were
implemented in Java and include generation of dialogues and
problem markers to assist the user tracking and resolving
inconsistencies. An event handler was implemented in Java to
implement extraction of textual requirements into abstract
interactions, and another to generate an EUC model from the
abstract interaction. Two further event handlers are written in
Java, one to perform a comparison of the EUC model to the
pattern template library, and one to perform the visual
differencing using Marama APIs to annotate the EUC diagram.

6. EVALUATION
In our prior work, we demonstrated that end users find manual
extraction of EUCs difficult, time consuming and error prone [1]
We also demonstrated that the algorithms we have used for
abstract interaction and EUC extraction from natural language,
produce much more accurate EUCs than manual extraction
provides and far more rapidly. We wanted to demonstrate the
effectiveness of our inconsistency, incompleteness and
incorrectness detection approach along with the usability of our
tool in supporting an engineer improve requirements quality with
this approach. To this end we conducted an end user study to
evaluate user perceptions of the tool and its application.
Participants in the study were 11 software engineering post-
graduate students, several of whom had previously worked in
industry as developers and/or requirements engineers. All had
some familiarity with EUC modeling, but were not experts in the
approach. Each participant was given a brief tutorial on how to
use the tool and some examples of how the tool manages
consistency between the three requirement forms. They then
undertook exercises to extract abstract interactions from textual
requirements and map the abstract interactions to Essential Use

Cases. Further exercises on modifications to any of the
requirements forms followed: adding and deleting elements,
changing names and sequence ordering and observation of the
resulting consistency management. Finally participants used the
pattern library and visual differencing for further requirements
checking and quality improvement.

Having familiarized themselves with the tool’s capabilities, users
completed a three part survey comprising: (1) a standard
evaluation of user perceptions of usefulness, ease of use, ease of
learning and satisfaction using a set of three questions addressing
each of these characteristics; (2) a set of questions to determine
user perceived strengths of selected dimensions of the cognitive
dimensions of notations (CD) [23], a common approach for
evaluating visual language environments – the questions being
adapted from [15]; and (3) open ended questions related to
improvements participants desired. For (1) and (2) a five part
Likert scale was used for each question.
Figure 8 shows the results for the standard usability survey. For
each characteristic, the results of each corresponding three
question block were averaged to produce the results shown. The
results are very positive, with strong agreement over the
usefulness of the tool (over 80% strongly agree or agree on its
usefulness), the ease of use (over 90%), ease of learning (over
90%) and satisfaction (over 80%). The small number of cases of
disagreement over usefulness and satisfaction related to a
preference by those participants for a UML use case based
approach rather than the Essential Use Case approach. Some also
felt that requirements engineers would be too constrained by the
available templates available in the EUC interaction pattern
library (shown in answers to the open ended questions). However,
overall these results are very encouraging, particularly given prior
studies, our own and others, that suggest EUC modeling, while
appealing to end users, has a large barrier to entry due to
difficulty of use [17].

Figure 8. User study result-Usefulness, ease of use, ease of

learning and satisfaction
The CD study allowed us to explore in more detail the reason for
these user perceptions. Table 2 shows each of the dimensions we
were interested in evaluating and the question addressing it. Table
3 shows the evaluation results for each of these questions. These
demonstrate interesting tradeoffs between the dimensions that we
feel have contributed to the strong usability acceptance. The
visibility and viscosity results demonstrate that users are

comfortable with the tool and find it easy to make changes to the
diagrams representing the various notational forms. The strong
closeness of mapping rating and the relatively neutral hard mental
effort and error proneness ratings point to the EUC notations
being seen as relatively intuitive and understandable by our users.
This is in strong contrast to the difficulty found by users in
understanding and applying EUCs found in the prior studies. The
consistency management and automated extraction support
appears to be responsible for this, as demonstrated by the high
ratings for visibility of dependencies, consistency of notations and
progressive evaluation.

Table 2 Cognitive dimensions and questions evaluating them
Dimension Question

visibility It is easy to see various parts of the tool

viscosity It is easy to make changes

diffuseness The notation is succinct and not long-winded

hard mental
effort

Some things do require hard mental effort

error-proneness It is easy to make errors or mistakes

closeness of
mapping

The notation is closely related to the result

consistency It is easy to tell what each part is for when reading
the notation

hidden
dependencies

The dependencies are visible

progressive
evaluation

It is easy to stop and check my work so far

premature
commitment

I can work in any order I like when working with
the notation

Table 3: Evaluation result for Cognitive Dimensions questions
Cognitive
dimension

Strongly
Disagree Disagree Neither Agree Strongly

Agree
Visibility 0.0 0.0 0.0 90.9 9.1
Viscosity 0.0 9.1 9.1 72.7 18.2
Diffuseness 0.0 0.0 9.1 63.6 27.3
Hard-mental
effort 9.1 27.3 45.5 18.2 0.0
Error-
Proneness 0.0 54.5 45.5 0 0.0
Closeness of
Mapping 0.0 9.1 9.1 72.7 9.1
Consistency 0.0 0.0 18.2 72.7 9.1
Hidden
Dependencies 0.0 0.0 18.2 54.5 27.3
Progressive
Evaluation 0.0 0.0 18.2 54.5 27.3
Premature
Commitment 0.0 0.0 18.2 45.4 36.4
When it was introduced, the EUC semi-formal requirements
modeling approach promised significant advantages in terms of
quality enhancement and reusability [24]. In practice, however,
the approach suffered from an inability for users to get the “right”
level of abstraction when turning textual requirements into EUCs,
plus difficulty in keeping EUC models consistent with textual
requirements as requirements evolved. This led to poor
performance of the methodology in practice and low uptake [1].
Combining the results of our user study with our prior efficacy
results, it is apparent that, through appropriate tool support, the
promised potential of the EUC approach is achievable.

7. RELATED WORK
The management of consistency and improvement in quality of
requirements is an active area of research. Goknil et al. [25]
proposed an approach together with a tool for defining
requirement relations using traceability. They cater for issues of
consistency, change management and inference of requirements.
First order logic is used to support the consistency checking of
relations and inferring new relations. However their approach
only supports textual requirements and lacks consistency
management between textual and other requirement artifacts such
as use case and activity diagrams. There is also no automation
provided for modeling the requirement. The visualized result of
either inferred relations or inconsistencies needs to be interpreted
manually by the requirement engineer which can lead to errors
[25]. Our work fills some of the gaps here as we cover
consistency checking between multiple requirement artifacts and
provide automation support for capturing textual requirement,
generating Essential Use Cases and checking inconsistency
besides providing visual support for detecting and resolving
inconsistency, incompleteness and incorrectness problems.

Kroha et al. [26] investigated use of semantic web technology to
check consistency of requirement specifications. They transform
the static part of UML models that illustrate requirements into a
problem ontology and attempt to discover inconsistencies by
using ontological reasoning to uncover contradictions [26]. This
work does not, however, check for behavioral consistency as they
cannot represent dynamic aspects of UML specifications in the
ontology. By contrast, our work focuses on behavioral
requirements, complementing their approach.

Graaf and Deursen [27] check for consistency between two types
of behavioral specification: scenarios and state machines. They
apply model transformations to generate state machines from
scenarios. They then compare the generated state machines with
manually developed state machines [27]. Some aspects of this
work are similar as ours as we also compare the generated EUC
model with our manually specified interaction library templates.
However we differ in the representation model used and the
purpose for matching the models. We also automate the checking
and visualize the comparison results using visual differencing.
We also support continued consistency management support with
a natural language representation of requirements.

Nentwich et al. propose a repair framework for inconsistent
distributed documents [28]. They generate interactive repairs
from an input of first order logic formula that constrains the
documents. Their repair system provides a correct repair action
for each inconsistency together with available choices to handle
the problem. However, they faced problems when the repair
actions interacted with the grammar in a document, and also
actions generated by other constraints [28]. Their approach also
fails to identify a single inconsistency that may lead to other
inconsistencies [28]. Our work overcomes this via our EUC
interaction pattern library which better tackles the management of
natural language requirements across a broad set of domains. In
addition, our tool provides support for recognizing both single
and multiple inconsistencies in requirement components. It also
highlights and informs users via feedback and warning
notification about affected components.

Mehra et al. apply visual differencing and diagram versioning
and merging to support asynchronous collaborative diagramming

[19]. Visual differencing allows users to interactively view and
resolve differences between multiple diagram versions [19]. We
have adopted this visual differencing approach to highlight
differences between the generated EUC model and template.
However, our focus is broader, supporting checks for
inconsistency, incompleteness and incorrectness errors that exist
in the generated model compared to the template, instead of just
syntactic inconsistencies between diagram versions.

8. CONCLUSIONS
We have described a novel approach supporting requirements
quality improvement via a combination of semi-formal model
extraction from natural language specifications and analysis using
an EUC interaction pattern library. Low-level inconsistency
problems can be identified such as natural language phrases
without matching semi-formal model elements and meta-model
constraint violations of the extracted model. Higher-level
problems, including inconsistency, incompleteness and
incorrectness can be identified by comparing the semi-formal
model to the Essential interaction pattern and to the “best
practice” examples of EUC interaction pattern templates. A visual
differencing technique highlights differences between the pattern
template and EUC model. Modifications to EUC, abstract
interaction and natural language requirements representations are
also supported with consistency management support between the
different representations. We evaluated our prototype tool from
effectiveness and usability perspectives and the CD framework
using an end user study. The results of this study are promising
with most participants finding our tool to be useful for improving
quality and managing consistency of requirements.

In future work we are developing an Essential User Interface
(EUI) representation and a form based UI designer in order to
visualize requirements as likely interface models as they captured.
The generated UI could be used to show that requirements
expressed by clients are consistent with the requirement
engineer’s view using this alternative visualization mechanism.
Further possibilities include generation of alternative concrete
interface forms from the abstract EUC model exploiting specific
technology choices allowing an end to end rapid user interaction
prototyping mechanism.

9. ACKNOWLEDGEMENT
The research is funded by the PReSS Account of University of
Auckland, the FRST Software Process and Product Improvement
Project, Ministry Of Higher Education Malaysia and Universiti
Teknikal Malaysia Melaka (UTeM).

10. REFERENCES
 [1] Kamalrudin, M., Grundy, J. and Hosking, J., Tool Support

for Essential Use Cases to Better Capture Software
Requirements. In Proceedings of the 25th IEEE/ACM
International Conference on Automated Software
Engineering, Antwerp, Belgium, Sept 16-20 2010, ACM.

 [2] Fabbrini, F., Fusani, M., Gnesi, S. and Lami, G., The
linguistic approach to the natural language requirements
quality: benefit of the use of an automatic tool. In
Proceedings of the 26th Annual NASA Goddard Software
Engineering Workshop, 2001, 97-105.

 [3] Kamalrudin, M. Automated Software Tool Support for
Checking the Inconsistency of Requirements. In
Proceedings of the 2009 IEEE/ACM International
Conference on Automated Software Engineering, Auckland,

New Zealand, Nov 16-20 2009, IEEE CS Press, pp. 693-
697.

 [4] Zowghi, D., and Gervasi, V. On the interplay between
consistency, completeness, and correctness in requirements
evolution. Information and Software Technology 45 (14),
November 2003, 993-1009.

 [5] Spanoudakis and G, Zisman. A. Inconsistency Management
in Software Engineering in “Handbook of Software
Engineering and Knowledge Engineering.”, vol 1, World
Publishing, 2001, pp. 329-380.

 [6] Nuseibeh, B., Easterbrook S. and Russo, A. Leveraging
Inconsistency in Software Development. Computer 33 (4),
2000, 24-29.

 [7] Satyajit, A., Hrushikesha, M. and George, C., Domain
consistency in requirements specification. In Proceedings of
the Fifth International Conference on, Quality Software,
Melbourne, Australia, September 2005, IEEE CS Press, pp.
231-238.

 [8] Kozlenkov, A. and Zisman, A., Are their Design
Specifications Consistent with our Requirements?. In
Proceedings of 10th Anniversary IEEE Joint International
Conference on Requirements Engineering, Essen, Germany,
September 2002, IEEE CS Press, pp. 145-156.

 [9] Boyd, S., Zowghi, D. and Farroukh, A., Measuring the
expressiveness of a constrained natural language: an
empirical study. In Proceedings of the 13 IEEE
International Conference Requirements Engineering, Paris,
France, 2005, IEEE CS Press, pp. 339-349.

[10] Do, K., Method and Implementation for Consistency
Verification of DEVS Model against User Requirement. In
Proceeding of the 10th International Conference on
Advanced Communication Technology, Gangwon-Do,
Korea, 2008, pp. 400-404.

[11] Egyed, A., Scalable Consistency Checking Between
Diagrams-The ViewIntegra Approach. In Proceedings of
the 16th IEEE international conference on Automated
software engineering, San Diego, California, November
2001, IEEE CS Press, pp. 387.

[12] Denger, C., Berry, D.M. and Kamsties, E., Higher Quality
Requirements Specifications through Natural Language
Patterns. In Proceedings of the IEEE International
Conference on Software-Science, Technology &
Engineering, Herzlia, Israel, 2005, IEEE CS Press, pp. 80.

[13] Kamalrudin, M, Grundy, J and Hosking J. Managing
consistency between textual requirements, abstract
interactions and Essential Use Cases. In Proceeding of the
34th Annual IEEE International Computer Software&
Applications, Seoul, Korea, July 2010, IEEE CS Press, pp.
327-336.

[14] Constantine, L.L. and Lockwood, A.D.L. Software For Use:
A Practical Guide to the Models and Methods of Usage-
Centered Design. ACM Press/Addison Wesley Longman,
Inc, 1999.

[15] Kutar, M, Britton C., and Wilson. J, Cognitive Dimensions
An Experience Report. In Proceeding of the Twelfth Annual
Meeting of the Psychology of Programming Interest Group,
Memoria, Cozenza Italy, 2000, pp. 81-98.

[16] Biddle, R., Noble, J. and Tempero, E. 2002. Essential use

cases and responsibility in object-oriented development. In
Proceeding of the twenty-fifth Australasian conference on
Computer science, Melbourne, Victoria, Australia, 2002,
ACM, pp. 7-16.

 [17] Biddle, R, Noble J. and Tempero, E., Patterns for Essential
Use Case Bodies, CRPIT '02 Proceedings of the 2002
conference on Pattern languages of programs, vol 13,
Australian Computer Society, pp 85-98.

[18] Huzar, Z., Kuzniarz, L., Reggio, G. and Sourrouille, J.L.
Consistency Problems in UML-Based Software
Development. In UML Modeling Languages and
Applications, 2005, 1-12.

[19] Mehra, A., Grundy, J and Hosking, J. A generic approach
to Supporting Diagram Differencing and Merging for
Collaborative Design. In Proceedings of the 20th
IEEE/ACM international Conference on Automated
software engineering, Long Beach, CA, USA, 2005, ACM,
pp. 204 – 213.

[20] Ghose, A., Koliadis and G., Chueng, A. Process Discovery
from Model and Text Artefacts Services, In Proceeding of
the 2007 IEEE Congress on Services, Salt Lake City, UT
,July 2007, IEEE CS Press, pp. 167-174.

[21] Grundy, J.C., Hosking, J.G, Huh J. and, Li, N., Marama: an
Eclipse meta-toolset for generating multi-view
environments. In Proceedings of the 2008 IEEE/ACM
International Conference on Software Engineering, Liepzig,
Germany, May 2008, ACM, pp. 819-822.

[22] Nuseibeh, B., Easterbrook S., and Russo, A. Making
inconsistency respectable in software development. Journal
of Systems and Software, 58 (2), Sept 2001, pp. 171-180.

[23] Blackwell, A. and Green, T. A cognitive dimensions
questionnaire optimised for users. In Proceeding of the
Twelfth Annual Meeting of the Psychology of Programming
Interest Group, Corigliano Calabro, Cosenza, Italy, 2000,
pp. 137-152.

[24] Biddle, R., Noble, J., and Tempero E. 2002. Supporting
Reusable Use Cases. Lecture Notes in Computer Science,
Volume 2319, Springer-Verlag, 2002, pp. 135-138.

[25] Goknil, A., Kurtev, I., van den Berg, K. and Veldhuis, J.W.
Semantics of trace relations in requirements models for
consistency checking and inferencing, Software and
Systems Modeling, 2009, pp. 1-24.

[26] Kroha, P., Janetzko, R. and Labra, J.E., Ontologies in
Checking for Inconsistency of Requirements Specification.
In Proceeding of the Third International Conference on
Advances in Semantic Processing, Sliema, Malta, October
2009, IEEE CS Press, pp. 32-37.

[27] Graaf, B. and Deursen, A.V. Model-Driven Consistency
Checking of Behavioural Specifications. In Proceeding of
the Fourth International Workshop on Model-Based
Methodologies for Pervasive and Embedded Software,
Braga, Portugal, 2007, IEEE CS Press, pp. 115-126.

[28] Nentwich, C., Emmerich, W. and Finkelstein, A.
Consistency management with repair actions. In
Proceedings of the 25th International Conference on
Software Engineering, Portland, Oregon, 2003, IEEE CS
Press, 455-464.

